Challenges and Solutions for Private and Reproducible Environmental Exposure Assessment at Scale

Cole Brokamp

Division of Biostatistics and Epidemiology Cincinnati Children's Hospital Medical Center

January 12, 2021

Table of Contents

- Background
- DeGAUSS
- Spatiotemporal Geomarker
- Conclusion

Geomarkers

Geocoding Converting a string of text into spatial coordinates or boundaries

Geomarker Any geospatial measure that infuences or predicts health

Geomarkers

Geocoding Converting a string of text into spatial coordinates or boundaries

Geomarker Any geospatial measure that infuences or predicts health

place (+ time) \rightarrow estimating past "exposures"

Geomarkers

- Geomarkers are the most powerful predictor of disease, disorder, injury, and mortality
- Data and tools needed for high resolution spatiotemporal geomarker assessment at a population level

- Geomarkers are the most powerful predictor of disease, disorder, injury, and mortality
- Data and tools needed for high resolution spatiotemporal geomarker assessment at a population level

- Practical usage for exposure assessment is hindered by
 - large data + inefcient manual data curation
 - the need for technical expertise and software skills
 privacy restrictions

Protected Health Information

- Confdentiality of research subjects must be safeguarded
- HIPAA-defned "Safe Harbor" provision prohibits sharing of identifers and quasi-identifers, such as:
 - time fner than a calendar year
 - spatial boundary with < 20,000 residents

Protected Health Information

- Confdentiality of research subjects must be safeguarded
- ► HIPAA-defined "Safe Harbor" provision prohibits sharing of identifers and quasi-identifers, such as:
 - time fner than a calendar year
 - spatial boundary with < 20,000 residents
- Sharing PHI
 - consent often not obtained for unforeseen future analyses
 - retrospective consent often not feasible + consent bias
 - IRB and institutional DUA approvals can be lengthy and have diferent requirements
 - transmission of PHI to a third party often not possible

Protected Health Information

- Confdentiality of research subjects must be safeguarded
- ► HIPAA-defined "Safe Harbor" provision prohibits sharing of identifers and quasi-identifers, such as:
 - time fner than a calendar year
 - spatial boundary with < 20,000 residents
- Sharing PHI
 - consent often not obtained for unforeseen future analyses
 - retrospective consent often not feasible + consent bias
 - IRB and institutional DUA approvals can be lengthy and have diferent requirements
 - transmission of PHI to a third party often not possible

Presents challenges when integrating geomarkers into research studies and clinical applications

Problems with Current Approaches for Multi-Site Studies

- Anonymization
 - geomasking, date shifting, generalization
- must balance decrease in precision with analysis needs

Problems with Current Approaches for Multi-Site Studies

- Anonymization
 - geomasking, date shifting, generalization
 - must balance decrease in precision with analysis needs
- Independent Geomarker Assessment
 - specialized expertise and technical skills required at each site
 - diferences in methods introduce diferential error and bias downstream health associations

Problems with Current Approaches for Multi-Site Studies

- Anonymization
 - geomasking, date shifting, generalization
 - must balance decrease in precision with analysis needs
- Independent Geomarker Assessment
 - specialized expertise and technical skills required at each site
 - diferences in methods introduce diferential error and bias downstream health associations
- Existing Software Approaches

- commercial options are cost prohibitive and aren't designed for batch operations
- closed source geocoder prevents transparency and reproducibility

Vision

Curated and standardized library that researchers can utilize for secure, efcient, automated, and reproducible linkage of geomarkers to their own protected health and geolocation data.

Vision

- Curated and standardized library that researchers can utilize for secure, efcient, automated, and reproducible linkage of geomarkers to their own protected health and geolocation data.
- A generalized framework for geomarker curation and computation to which exposure scientists can contribute.

Vision

 Curated and standardized library that researchers can utilize for secure, efcient, automated, and reproducible linkage of geomarkers to their own protected health and geolocation data.

 A generalized framework for geomarker curation and computation to which exposure scientists can contribute.

- FAIR (fndable, accessible, interoperable, reusable) data
- Reproducible using computable exposures
- Portable for sharing and mobility of compute

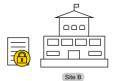
Table of Contents

Background

DeGAUSS

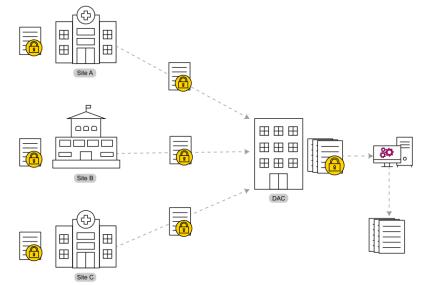
Spatiotemporal Geomarkers

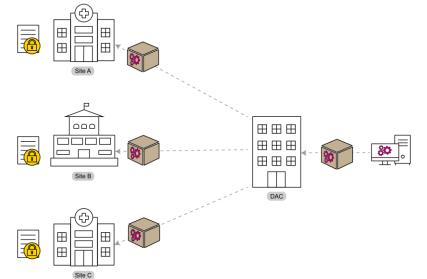
Conclusion


DEcentralized **G**eomarker **A**ssessment for m**U**lti **S**ite **S**tudies

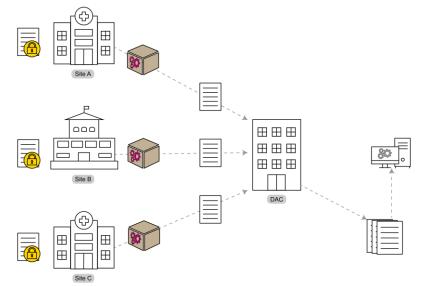
https://degauss.org

Bringing Computation to Data





Bringing Computation to Data


DeGAUSS

Bringing Computation to Data

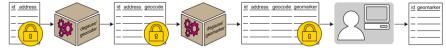
Bringing Computation to Data

00000000

DeGAUSS

- Decentralized but reproducible and standardized
 - Container framework that reads and writes CSV fles
- No extensive computational resources

No geospatial or computing expertise required


PHI is never exposed to a third party or the internet

DeGAUSS

- Decentralized but reproducible and standardized
 - Container framework that reads and writes CSV fles
- No extensive computational resources

No geospatial or computing expertise required

PHI is never exposed to a third party or the internet

DeGAUSS

- Decentralized but reproducible and standardized
- Container framework that reads and writes CSV fles

- No extensive computational resources
- No geospatial or computing expertise required
- PHI is never exposed to a third party or the internet

- Free and open source
- Automated and continuous documentation and integration
- Metadata curation and integration
- ► Multiple user entry-points (data, geomarker assessment code, Docker/OCI images, GUI, stand-alone application) ►

Community supports and contributions

Anonymity and Reidentifcation

- Anonymity can ensure small, but non-zero, chance of reidentification
- published examples of reidentification attacks by researchers (Sweeney 2017, Boronow 2020)
- reidentification tasks are rare and often unsuccessful (Emam 2011, Emam 2015)
- Don't confate re-identification of identifiers with reidentification of quasi-identifiers
- quasi-identifers recovered by merging with extant datasets
- institutional restrictions on sharing of quasi-identifers

Table of Contents

Background

DeGAUSS

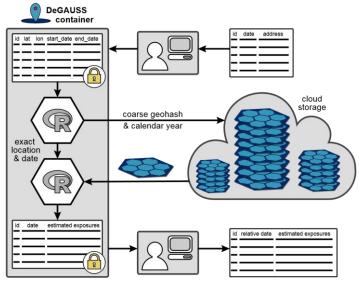
Spatiotemporal Geomarkers

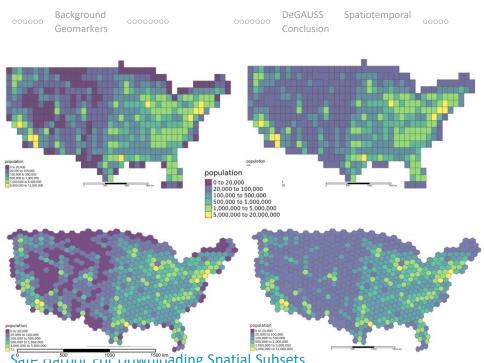
Conclusion

High Resolution Spatiotemporal Geomarkers

- Pre-computed data "products"
 - produced by from interpolation/prediction exposure models
 - often uses publicly available spatiotemporal datasets
 - ambient air pollution, climate, noise, wildfres, crime
- High resolution
 - often < 1 km sq. exposures covering entire country
 - daily estimates covering 2000 2021 Exposure

timing


used to study acute, short-term, and long-term exposures


- development-based temporal averages during early
- Large fle sizes require data transmission, when most of data usually not used

life

Most approaches currently require sharing PHI with model developer for addition of estimates

Approach

Applications

- ▶ ECHO, eMERGE, government organizations, electronic health data warehouses
 - diferent levels of consent, data management and coordination centers
- Applied within DeGAUSS containers for several diferent daily, high resolution ambient pollution estimates
 - https://degauss.org/pm
 - https://degauss.org/schwartz

Advantages

- Prevents download of unnecessary spatial and/or temporal "slices" of data
- Decreases time and resources needed by end user to run software without sharing PHI
- Automated downloading, parsing, and spatiotemporal joining

Background DeGAUSS Spatiotemporal Conclusion

DeGAUSS

image*	description	version**
ghcr.io/degauss-org/geocoder	batch geocoding	version v3.0.2
ghcr.io/degauss-org/census_block_group	census block group and tract FIPS	version v0.4.1
<pre>ghcr.io/degauss-org/st_census_tract</pre>	spatiotemporal census tract FIPS 1970 - 2020	version v0.1.2
<pre>ghcr.io/degauss-org/dep_index</pre>	census tract-level deprivation index	version v0.1
ghcr.io/degauss-org/roads	proximity and length of major roads	version v0.1
ghcr.io/degauss-org/aadt	average annual daily traffic	version v0.1.1
ghcr.io/degauss-org/greenspace	enhanced vegetation index	version v0.2
ghcr.io/degauss-org/nlcd	land cover (imperviousness, land use, greenness)	version v0.1
ghcr.io/degauss-org/pm	daily PM2.5	version v0.1.3
ghcr.io/degauss-org/narr	daily weather data (air temperature, humidity, etc)	version v0.1
<pre>ghcr.io/degauss-org/drivetime</pre>	distance and drive time to various care sites	version v1.0
degauss/schwartz_grid_lookup	schwartz grid for spatiotemporal pollutant models	version v0.4.1
degauss/schwartz	daily PM2.5, NO2, and O3 concentrations	version v0.5.5

https://degauss.org/available_images

Table of Contents

Background

DeGAUSS

Spatiotemporal Geomarkers

Conclusion

Future Directions

- ▶ GUI interfaces for researchers and scientists
- Metadata curation for data science workfows and clinical informatics pipelines
- Cloud Optimized Geotifs (COG)
- Integrating methods for "deidentifying" area-level data
- ▶ Homomorphic encryption
- Facilitating community contributions

Discussion

- geomarkers and epigenome change over time
- report back for spatiotemporal exposures
- less focus on privacy/precision tradeofs for time

Geospatial data collection and sharing

- empower people to donate their own spatiotemporal data collected via cloud-hosted location trackers
- think about consent in the future: limited sharing of pseudoidentifers only?

Discussion

- ► HIPAA Safe Harbor not sufcient to guarantee anonymity, but should this be our goal in research studies?
- Updated guidance & policies needed
 - zip code. . .
 - details on spatial and temporal generalization strategies
 - update examples to use census-defined boundaries
 - reidentifcation of pseudo-identifers versus identifers
 - how to deal with datasets that may be considered de-identifed now, but will change to identifed after unforeseen datasets and methods arise?
- Must maintain reproducibility and privacy

Thank You

https://degauss.org @degaussorg

cole.brokamp@cchmc.org https://colebrokamp.com @cole brokamp

DeGAUSS is supported by NIH R01LM013222 & U2COD0233754

